Approximate Inference in Probabilistic Models
نویسندگان
چکیده
We present a framework for approximate inference in probabilistic data models which is based on free energies. The free energy is constructed from two approximating distributions which encode different aspects of the intractable model. Consistency between distributions is required on a chosen set of moments. We find good performance using sets of moments which either specify factorized nodes or a spanning tree on the nodes. The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. . . .
منابع مشابه
Encapsulating models and approximate inference programs in probabilistic modules
This paper introduces the probabilistic module interface, which allows encapsulation of complex probabilistic models with latent variables alongside custom stochastic approximate inference machinery, and provides a platform-agnostic abstraction barrier separating the model internals from the host probabilistic inference system. The interface can be seen as a stochastic generalization of a stand...
متن کاملAIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Approximate probabilistic inference algorithms are central to many fields. Examples include sequential Monte Carlo inference in robotics, variational inference in machine learning, and Markov chain Monte Carlo inference in statistics. A key problem faced by practitioners is measuring the accuracy of an approximate inference algorithm on a specific data set. This paper introduces the auxiliary i...
متن کاملA Hybrid Approach for Probabilistic Inference using Random Projections
We introduce a new meta-algorithm for probabilistic inference in graphical models based on random projections. The key idea is to use approximate inference algorithms for an (exponentially) large number of samples, obtained by randomly projecting the original statistical model using universal hash functions. In the case where the approximate inference algorithm is a variational approximation, t...
متن کاملVariational Inference in Mixed Probabilistic Submodular Models
We consider the problem of variational inference in probabilistic models with both log-submodular and log-supermodular higher-order potentials. These models can represent arbitrary distributions over binary variables, and thus generalize the commonly used pairwise Markov random fields and models with log-supermodular potentials only, for which efficient approximate inference algorithms are know...
متن کاملGraph-based Approximate Counting for Relational Probabilistic Models
One of the key operations inside most relational probabilistic models is counting be it for parameter/structure learning or for efficient inference. However, most approaches use the logical structure for counting and do not exploit any fast counting methods. In this work-inprogress, we explore the closer connections to graph data bases and propose methods that obtain both exact and approximate ...
متن کاملInference by Reparameterization in Neural Population Codes
Behavioral experiments on humans and animals suggest that the brain performs probabilistic inference to interpret its environment. Here we present a new generalpurpose, biologically-plausible neural implementation of approximate inference. The neural network represents uncertainty using Probabilistic Population Codes (PPCs), which are distributed neural representations that naturally encode pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004